185 research outputs found

    Abundance and local - scale processes contribute to multi-phyla gradients in global marine diversity

    Get PDF
    Among themost enduring ecological challenges is an integrated theory explaining the latitudinal biodiversity gradient, including discrepancies observed at different spatial scales. Analysis of Reef Life Survey data for 4127 marine species at 2406 coral and rocky sites worldwide confirms that the total ecoregion richness peaks in low latitudes, near +15°N and −15°S. However, although richness at survey sites ismaximal near the equator for vertebrates, it peaks at high latitudes for large mobile invertebrates. Site richness for different groups is dependent on abundance, which is in turn correlated with temperature for fishes and nutrients for macroinvertebrates. We suggest that temperature-mediated fish predation and herbivory have on strained mobile macroinvertebrate diversity at the site scale across the tropics. Conversely, at the ecoregion scale, richness responds positively to coral reef area, highlighting potentially huge global biodiversity losses with coral decline. Improved conservation outcomes require management frameworks, informed by hierarchical monitoring, that cover differing site- and regional-scale processes across diverse taxa, including attention to invertebrate species, which appear disproportionately threatened by warming seas

    Проблеми управління фінансовою безпекою підприємства

    Get PDF
    Expanding urbanization in estuaries and the increase in pollutants from anthropogenic point sources can affect nearby benthic assemblages. Using a paired impact-control design, we assessed the effects of pollution from anthropogenic point sources (marinas, storm-water drains, sewage outfalls and fish farms) on algal and sessile invertebrate recruits to pavers placed in an industrialized Tasmanian estuary. Species number and cover of native recruits were lower after 12 months at sites outside marinas relative to paired control sites, whereas non-native and cryptogenic recruits were significantly higher outside marinas and near sewage outfalls. The cover of fast-growing, opportunistic species was significantly higher at sites near fish farms and sewage outfalls, and the cover of native species was also greater at sites near sewage outfalls relative to the paired control sites. Our results suggest an increased management focus on controlling pollution from marinas and sewage outfalls is warranted to limit the spread of non-native and cryptogenic species

    Anthropogenic disruptions to longstanding patterns of trophic-size structure in vertebrates

    Get PDF
    Diet and body mass are inextricably linked in vertebrates: while herbivores and carnivores have converged on much larger sizes, invertivores and omnivores are, on average, much smaller, leading to a roughly U-shaped relationship between body size and trophic guild. Although this U-shaped trophic-size structure is well documented in extant terrestrial mammals, whether this pattern manifests across diverse vertebrate clades and biomes is unknown. Moreover, emergence of the U-shape over geological time and future persistence are unknown. Here we compiled a comprehensive dataset of diet and body size spanning several vertebrate classes and show that the U-shaped pattern is taxonomically and biogeographically universal in modern vertebrate groups, except for marine mammals and seabirds. We further found that, for terrestrial mammals, this U-shape emerged by the Palaeocene and has thus persisted for at least 66 million years. Yet disruption of this fundamental trophic-size structure in mammals appears likely in the next century, based on projected extinctions. Actions to prevent declines in the largest animals will sustain the functioning of Earth's wild ecosystems and biomass energy distributions that have persisted through deep time

    Maximizing regional biodiversity requires a mosaic of protection levels

    Get PDF
    Protected areas are the flagship management tools to secure biodiversity from anthropogenic impacts. However, the extent to which adjacent areas with distinct protection levels host different species numbers and compositions remains uncertain. Here, using reef fishes, European alpine plants, and North American birds, we show that the composition of species in adjacent Strictly Protected, Restricted, and Non-Protected areas is highly dissimilar, whereas the number of species is similar, after controlling for environmental conditions, sample size, and rarity. We find that between 12% and 15% of species are only recorded in Non-Protected areas, suggesting that a non-negligible part of regional biodiversity occurs where human activities are less regulated. For imperiled species, the proportion only recorded in Strictly Protected areas reaches 58% for fishes, 11% for birds, and 7% for plants, highlighting the fundamental and unique role of protected areas and their environmental conditions in biodiversity conservation

    Changes in sea floor productivity are crucial to understanding the impact of climate change in temperate coastal ecosystems according to a new size-based model

    Get PDF
    The multifaceted effects od climarte changfe on physical and blogeochemical process are rapidly altering marine ecosystems but often are considered in isolation, leaving our understanding of interactions between these drivers of ecosystem change relatively poor. This is particularly true for shallow coastal ecosystems, which are fuelled by a combination of distinct pelagic and benthic energy pathways that may respond to climate change in fundamentally distinct ways. The fish production supported by these systems is likely to be impacted by climate change differently to those of offshore and shelf ecosystems, which have relatively simpler food webs and mostly lack benthic primary production sources. We developed a novel, multispecies size spectrum model for shallow coastal reefs, specifically designed to simulate potential interactive outcomes of changing benthic and pelagic energy inputs and temperatures and calculate the relative importance of these variables for the fish community. Our model, calibrated using field data from an extensive temperate reef monitoring program, predicts that changes in resource levels will have much stronger impacts on fish biomass and yields than changes driven by physiological responses to temperature. Under increased plankton abundance, species in all fish trophic groups were predicted to increase in biomass, average size, and yields. By contrast, changes in benthic resources produced variable responses across fish trophic groups. Increased benthic resources led to increasing benthivorous and piscivorous fish biomasses, yields, and mean body sizes, but biomass decreases among herbivore and planktivore species. When resource changes were combined with warming seas, physiological responses generally decreased species biomass and yields. Our results suggest that understanding changes in benthic production and its implications for coastal fisheries should be a priority research area. Our modified size spectrum model provides a framework for further study of benthic and pelagic energy pathways that can be easily adapted to other ecosystems

    Delineating reef fish trophic guilds with global gut content data synthesis and phylogeny

    Get PDF
    Understanding species' roles in food webs requires an accurate assessment of their trophic niche. However, it is challenging to delineate potential trophic interactions across an ecosystem, and a paucity of empirical information often leads to inconsistent definitions of trophic guilds based on expert opinion, especially when applied to hyperdiverse ecosystems. Using coral reef fishes as a model group, we show that experts disagree on the assignment of broad trophic guilds for more than 20% of species, which hampers comparability across studies. Here, we propose a quantitative, unbiased, and reproducible approach to define trophic guilds and apply recent advances in machine learning to predict probabilities of pairwise trophic interactions with high accuracy. We synthesize data from community-wide gut content analyses of tropical coral reef fishes worldwide, resulting in diet information from 13,961 individuals belonging to 615 reef fish. We then use network analysis to identify 8 trophic guilds and Bayesian phylogenetic modeling to show that trophic guilds can be predicted based on phylogeny and maximum body size. Finally, we use machine learning to test whether pairwise trophic interactions can be predicted with accuracy. Our models achieved a misclassification error of less than 5%, indicating that our approach results in a quantitative and reproducible trophic categorization scheme, as well as high-resolution probabilities of trophic interactions. By applying our framework to the most diverse vertebrate consumer group, we show that it can be applied to other organismal groups to advance reproducibility in trait-based ecology. Our work thus provides a viable approach to account for the complexity of predator-prey interactions in highly diverse ecosystems.Peer reviewe

    Spatial compositional turnover varies with trophic level and body size in marine assemblages of micro- and macroorganisms

    Get PDF
    Abstract Aim Spatial compositional turnover varies considerably among co-occurring assemblages of organisms, presumably shaped by common processes related to species traits. We investigated patterns of spatial turnover in a diverse set of marine assemblages using zeta diversity, which extends traditional pairwise measures of turnover to capture the roles of both rare and common species in shaping assemblage turnover. We tested the generality of hypothesized patterns related to ecological traits and provide insights into mechanisms of biodiversity change. Location Temperate pelagic and benthic marine assemblages of micro- and macroorganisms along south-eastern Australia (30–36° S latitude). Time period 2008–2021. Major taxa studied Bacteria, phytoplankton, zooplankton, fish, and macrobenthic groups. Methods Six marine datasets spanning bacteria to fishes were collated for measures of “species” occurrence, with a 1° latitude grain. For each assemblage, ecological traits of body size, habitat and trophic level were analysed for the form and rate of decline in zeta diversity and for the species retention rate. Results Species at higher trophic levels showed two to three times the rate of zeta diversity decline compared with lower trophic levels, indicating an increase in turnover from phytoplankton to carnivorous fishes. Body size showed the hypothesized unimodal relationship with rates of turnover for macroorganisms. Patterns of bacterial turnover contrasted with those found for macroorganisms, with the highest levels of turnover in pelagic habitats compared with benthic (kelp-associated) habitats. The shape of retention rate curves showed the importance of both rare and common species in driving turnover; a finding that would not have been observable using pairwise (beta diversity) measures of turnover. Main conclusions Our results support theoretical predictions for phytoplankton and macroorganisms, showing an increase in turnover rate with trophic level, but these predictions did not hold for bacteria. Such deviations from theory need to be investigated further to identify underlying processes that govern microbial assemblage dynamics

    Motif Minang Kaluak Paku Kacang Balimbiang pada Busana Kasual

    Get PDF
    Minangkabau sebagai salah satu suku bangsa yang mengisi kekhasan budaya Indonesia memiliki warisan budaya yang terpencar dalam berbagai aspek kehidupannya. Salah satu warisan budaya adalah seni ukir. Seni ukir yang dikembangkan dengan mengambil ide dari alam memiliki makna-makna filosofi bagi kehidupan masyarakat Minangkabau. Semua jenis ukiran yang dipahatkan di Rumah Gadang menunjukkan unsur penting pembentuk budaya Minangkabau bercerminkan kepada apa yang ada di alam. Salah satu ukiran pada rumah gadang yaitu kaluak paku. Kaluak paku adalah nama salah satu motif ukiran dalam adat Minangkabau. Berasal dari motif gulungan (kelukan/kaluak) pada ujung tanaman pakis (paku) yang masih muda. Ukiran kaluak paku rumah gadang melambangkan tanggung jawab seorang lelaki dalam adat Minangkabau kepada generasi penerus, sebagai ayah dari anak-anaknya dan sebagai mamak dari kemenakan (keponakan). Ukiran rumah gadang kaluak paku minangkabau inilah yang menjadi sumber ide penciptaan busana pada tugas akhir ini. Pada Penciptaan karya ini menggunakan beberapa metode, yaitu metode pendekatan estetis dan ergonomis, metode pengumpulan data dengan studi pustaka, dan motode penciptaan dengan teori Gustami Sp 3 tahap 6 Langkah. Dalam proses pembuatan karya dibutuhkan beberapa data, cara pengumpulan data acuan berdasarkan pengumpulan data pustaka yaitu berupa buku, jurnal pada media sosial, serta aplikasi pada smartphone seperti pinterest. Data yang dikumpulkan yang paling utama adalah gambar bentuk visual dari ukiran tanaman kaluak paku minangkabau dan busana kasual. Penciptaan karya yang dihasilkan yaitu berupa 8 busana kasual. Siluet pada kesuluruhan hasil karya yaitu memiliki siluet A yang mengembang pada bagian bawah. Pada penciptaan karya ini menggunakan bahan utama primisima. Perpaduan warna yang diterapkan menggunakan warna khas minangkabau yang diambil dari warna bendera adatnya “marawa” yaitu merah, hitam, dan kuning. Karya- karya yang dihasilkan dengan penggunaan warna tersebut sangat sesuai dengan tema yang mengangkat ukiran rumah gadang kaluak paku minangkabau. Kata Kunci : Minang, Kaluak Paku Kacang Balimbiang, Kasua

    Reef fishes at all trophic levels respond positively to effective marine protected areas

    Get PDF
    Marine Protected Areas (MPAs) offer a unique opportunity to test the assumption that fishing pressure affects some trophic groups more than others. Removal of larger predators through fishing is often suggested to have positive flow-on effects for some lower trophic groups, in which case protection from fishing should result in suppression of lower trophic groups as predator populations recover. We tested this by assessing differences in the trophic structure of reef fish communities associated with 79 MPAs and open-access sites worldwide, using a standardised quantitative dataset on reef fish community structure. The biomass of all major trophic groups (higher carnivores, benthic carnivores, planktivores and herbivores) was significantly greater (by 40% - 200%) in effective no-take MPAs relative to fished open-access areas. This effect was most pronounced for individuals in large size classes, but with no size class of any trophic group showing signs of depressed biomass in MPAs, as predicted from higher predator abundance. Thus, greater biomass in effective MPAs implies that exploitation on shallow rocky and coral reefs negatively affects biomass of all fish trophic groups and size classes. These direct effects of fishing on trophic structure appear stronger than any top down effects on lower trophic levels that would be imposed by intact predator populations. We propose that exploitation affects fish assemblages at all trophic levels, and that local ecosystem function is generally modified by fishing
    corecore